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THE NUMERICAL SOLUTION OF THE SINGULAR INTEGRAL EQUATION
FOR DIFFRACTION BY A SOFT STRIP

Introduction
Very few problems involving scattering of a wave by an obstacle can be
solved exactly. The object of the present paper is to examine a method for
numerical solution of the integral equation for diffraction by an obstacle
for which solutions are available, namely a strip, with a view to the even-~
tual application of the method to scattering by obstacles of more general
shape.
We consider the problem of scalar two-dimensional diffraction of the
incident wave
ik(x cos ©+ y sin ©)
¢, = e >
i
by a soft strip lying in y = 0, ~a £ x £ a. It is requirejto solve the
steady-state wave equation

2 2
d oy 3%

1] 2, _
SEF I T =0

where ¢, = ¢i + ¢, is the total velocity potential consisting of the sum of

t
the incident and scattered potentials ¢i and ¢ respectively. The scattered
potential must satisfy s radiation condition at infinity. The boundary con-

dition on the strip is

It

¢t = 0, y=0, -asxsa,

_elkXCOS®’ y=0, -asxsa.,. (1)

or ¢ =
By superposition of simple sources of strength f(x) per unit length on the

strip, the scattered potential at any point (x,y) of space is given by

o =3 [ o) w0t - 67 + 1 s, (2)

-8




If we let (x,y) tend to a point on the strip we obtain, on applying the

boundary condition (1), an integral equation for the unknown function f(x):

. a .
-ﬁf_a 2(e) B (klx - gD ag = %0, (asxsa) (3)

Of the voluminous literature on this subject we quote the exact Mathieu
function solution of Morse and Rubinstein (7), the low-frequency expansions
of Millar (2) using an integral equation method of Bouwkamp, and the high-
frequency asymptotic expansions of Millar (&).

Low-frequency expansions have been obtained by a variational technique,
using analytical methods, by De Hopp <§). An estimate of the scattering
cross~section for normal incidence, using a crude constant approximation for
the source-strength £(x) on the strip, has been given by Erdélyi and Papas (2).
The present paper can be regarded as an extension of the method of Erdéiyi
and Papas using the method described in (Q). The difficulty in applying a
variational principle to scattering by obstacles with sharp edges is that
the unknown functions have singularities at the sharp edges. If we attempt
to use trial functions with the correct singularities at the edges we find |
that it is difficult to perform the necessary integrations. The integra-
tions can be performed for constant trial functions, but these do not
simulate the required singularities. In this paper we adopt the following

compromise. To simulate the function

1/\/(32 - XE):

{
o -p< x <P,
p Pp< X <a,

fx)

i

we use the approximation

f(x)



vhere @, B, p are determined from the variational principle. It is found by
the method described later that typical values for normal incidence and low
frequency are B/a =5, p= 0,92,

The variational principle

Consider the variational expression

B B
I(E,F) =f B(x) g(x) ax + f F(x) h(x) dx
Q (0]

B nB
- K(x,¢) E(x) F(g) ax dat , (%)
7 [Pt 00 ) ax

wvhere g, h, K are known functions, and E, F are to be determined so as to
extremise I(E,F). We set

E(x) = e(x) + 8n(x), F(x) = £(x) + et(x) , (5)
vhere we assume that e, f are the functions which we wish to find, namely the
functions which extremise I(E,F). In the usual way n(x), t(x) are arbitrary
functions. On varying the parameters &, € the functions E, F vary round the
required functions e, f. On inserting (5) in (4) we see that

I(E,F) = I(e,f) + A + B,

where A is first order in & and €, and B is second order:
p 5]
A= f £(x) (a(x) f K(t,x) e(t) ag) ax
(07 [0
p p
ro [ ) e - [T ke 2(e) ag) ax.
o o7
If I is stationary for variations of €, & round zero, the coefficients of

€, 8 are separately zero. Since ¢(x), n(x) are arbitrary, e(x), £(x)

satisfy the integral equations



J;B K(x,8) £(¢) at = g(x) , (0 =sxs8), (6a)
/:3 K(g,x) e(t) a& = h(x) , (asxsp). (6v)

If e, T must satisfy ;hese equations th;n we see from (4) that
C e) =fa <) ) =L n(x) £(x) ax . (1)

Suppose that we can guess the shape of e(x), f(x) so that we can
approximate e(x), f(x) by the expressions
E(x) = C%(x) , F(x) = DY (x) ,
where f; ,E$' are known functions, and C, D are constants which have to be
determined. If these expressions are substituted in (4) we can determine

optimum values for C and D by setting %% = %% = 0. This gives

J,h), &
C=A§*€,,3) N e
£ F
i(e,7) = {4Elon) (8)

where we use the notation

B
(pra) = f p(x) olx) ax,
(03
B
alp,a) =f f K(x,&) p(x) q(&) dx de.
[0 o

Application of the variational principle to diffraction by a sirip

We now apply the results obtained in the last section to the problem of
diffraction by a strip. By using the asymptotic expansion of the Hankel
function in (2) it is readily seen that the Ffar-field scattered by the strip

is given by




>

1
o ~ A(8,0) (8nkr)™2 RACSC2d s

where
A(6,8) = —fa £(g) e HHECOSO 4 (9)
In these expressions w;ause polar coordinates (r,0) and write A(6,8) to
remind us that A depends on both the angle 6 at which we observe the diffracted
wave, and the angle © of incidence of the incident wave (since f£(£) depends on
®). As shown by several authors (for instance, de Hoop (3)) the scattering
cross-section per unit width of the strip for a wave incident at angle @ is
given by
£(0) = - (1/4%a) Im (A(8,0)} . (10)
We obtsin a variational principle for A(B,8) by first of all identifying
the integral equation (3) with (6a). This indicates that £(¢) can be taken as

the same function in both equations and we can seb

K(xe) = - 3 B (kix - g1),  glx) = &M 000 (1%)

If now we identify minus the expression in (9) with (7) we see that
h(x) - e—ikx cos 6 , (11b)

and from (6b) the function e(x) must satisfy the integral equation
-iif e(e) B (yx - g1) ag = 7 005 0 (12)

Joog
From (7), (9) and the above identifications we see that the exact value of
A(6,8) is equal to -I(e,f) so that from (8) the variational expression for

A(6,0) is

Jf ¥(x) e ikx cos @ dxk/n ~ikx cos ..
A(6,0) ~

b[; U/: 1) (k lx - g|) (x)F () ax ag




This is the form of the variational principle used by other writers on this
subject, for example Morse and Feshbach (6) and de Hoop (3).
For our purposes it is more convenient to proceed in the following way.

Consider the integral equations

/wxux—m)ﬂwde=dﬂ, (-a = x 5 a), (13a)
[oxtix - g0 e g =nt) s (azxsa), (13b)

a
where we shall eventually make the identifications (11), with k(| x - &})
= K(x,g). We introduce, using an obvious notation for even and odd functions,
fa(x) + g(-x)} , (14a)
(g(x) - g(-x)} . (14p)

nj-
il
VTS,

£ (g) =
£ (¢)=

(£(g) + £(-£)3 , g, (x)
(£(g) - £(-£)3 , g_(x)

=
]
-

On changing the sign of x in (13&) we obtain

A

fax<|x+g1>f<g>ag=g<—x>, (o 5 x5 a). (15)

-a,
On adding and subtracting (1%a) and (15) we readily obtain the following pair

of integral equations which are togethér equivalent to (13a):

T 1,060 a8 = 6,00 (162)
(e]
9 [T re) s a0 (160)
where °
K (x,6) = kK(lx - &) + K(x + &), (16¢)

i

K (x,6) = K(|x - &) - K(x + ¢). (164)



T
In an exactly similar way, equation (13b) can be replaced by the following

pair, using notations analogous to (14):

il
=g
=

fa K (x,8) e (£) a& = n (x) , (17a)

I
=

W

S

fa K (x,8) e_(¢) at (170)

On comparing (162), (17a) with (6a,b) we obtain from (4) a variational
expression which we shall denote by I+ (E+, F+) where E+ and F+ are approxi-

mations to e, and f . The exact value of this expression, from (7), (14), is
a a
(et = [ o6 8,60 = [ n ) 2,00 e
' a
1 [ () + el (al) + () ax
o

= %fa (e(x) g(x) + e(x) g(-x)} ax. (18a)

-a
Similarly from (16b), (17b) we can derive a variation expression vhich we
denote by I_(E_,F_) where E_, F_ are approximations to e_, f_. The exact value

of this expression is readily shown to be

Ijqﬁj=ijm[dﬂg&)—dﬂgbﬂ]w. (180)
-a,

On adding (18a,b), and remembering that A(0,8) is equal to -I(e,f) whose
value is given in (7) we see that
A(6,8) = -2 (I,(e,,f,) + T (e,f )] . (19)
The variational expression for I, is

I, =fa B (x) g, (x) ax +fa F,(x) b (x) ax

[¢]

(6]
~[af: K, (x,¢) B (x) F (£) ax & , (20a)



vhere from (11)
g+(x) = cos (kx cos @), h_l_(x) = cos (kx cos ). (20b)
From this point onwards it is convenient to set a = 1. We also substi~
tute g for k to remind us of this assumption.

We take the trial functions F# E, to be step~functions:

F (x) = fo, p< x <p, E+(x\)=“'7; -g< x < g,
J J (21)
(B P<(xXI<T, 15y G 1Xl
- L
Substitution in (20a) gives
I, =901 +8Dx +aCy + BCx ~ Qyhyy ~ WBA1> - B7Az1 - BBAz: (22)
where from (20b)
. q )
_ _ sin (xq cos ®)
Dy = /; g+(x) dx = Kk cos O ’
1 . . .
D =fg(x)dx _ sin (K cos ©) - sin (k g cos @)
2 g F K cos ©
Similarly
o . sin (sp cos ) o, - Sin (k cos 6) - sin (kp cos 6)
1= k. cos & ’ 2 = k. cos 6
Also

All —f f K ().)g dx d.g 3 AlZ —f f K (X)§> dx dé b
: 1 ng 1 Al
Aoy =f f K (x,6) ax d¢ , App =f f K Go) ax ag .
p Yo pYq

When K+<x,g) has the special form given in (16c) these double integrals

can be 51mp11f1ed by means of the following results (cf. Noble (8)):

ffK(IX~§ldxd§ J({o = c|) +3(1a-dal) - (v -4dl]) -d(ja ~ cl),

b a
ff K(x +¢) axde = J(b+a) +3(a+c)-db+e) - da+a),
a C




where
/‘\Ol
Ja) = L/ (o = u) X(u) du.
0
In our case K(u) = ~ 3i H£1)(nu)'and it is convenient to express all integrals

H

in terms of

L(z) =U/\Z(z - v) HgT)(v) dv

; Z[foz 5 (u) du - Jl(z>] . i{z[foz Y (u) au - Y1<Z)J - ﬁ-} .

We have 4% J(a) = Lika) ,
and we find
462 Ayy = L{x(p + )} - L{xip - ai},
Bik® Ajp = L{r(1 + p)) - L{r(1 - p)} + L{kp - g1}~ L{#(p + )},
bik? Apy = L{x(1 + @)) - L{k(1 = @)) + L{xip - a - Lik(p + )},
Big? App = L{2k) + L{x(p + @)) - L{xlp - qi} + L{x(1 - p)}
- L{e(1 + p)} + L{s(1 = @)} - L{x(1 + q)} .

The optimum values of @, B, 7, & in the variational expression (22) for
I+ are determined by setting the derivatives of I+ with respect to these
parameters equal to zero. This gives two sets of two simultaneous egquations

for y, 6 and o, B:

I
Qo

i

“

Ay 7 + A0 =

Aoy ¥ + Agp & = Cp,

i
g
g

Ajp @ + Agy B =
A 1o Ot A22 B = D2.
If these values of o, B, 7, & are used, equation (22) gives

Iy

i

¥D1 + 8Dz = aCy + BCp

(Agz C1Dy = Ayp Cp Dy - Apy Cy Dp + Ay Cp Dp)/A, (23)

il




10

Where‘ A = All A22 - Alz A-21.
Next consider the variational expression I_ derived from (16b), (17b):

I =faE_(x) g_(x) dx -kfaF_(x) h (x) ax

o
a na
RO RO (24)
o Yo
where
g_(x) =1 sin (kx cos ®) , h (x) =~ i sin (kx cos 6).
We again set a = 1, replace k by k, and take the trial functions F_, E_ to be

odd step-functions:

F(x)= -0, -1<x<-p, E(x)=-8, -1<x<-q.
| ;
0, X< P, : 0, X< a, (25)
‘;a: p<x< ] ]rs, a<x< 1

\,
'~

Then (24) become;
I =pP + aQ ~ opB (26)

where

_ i f{cos (kg cos ®) - cos(k cos @)
- kK cos ®©

Q= - i {cos(kp cos 8) - cos (K cos 0)}
'k cos 6

1 1
B = f f K (x,6) dx dat,
P q

By following the procedure explained previously in connection with the Ai'

we can show that

$MiEB = L{(1 + 1)) + L{k(1 - )} + L{e(1 + @)} + L{k(1 ~ q)}

- L{x(p + @)} -~ L{dlp - q1} - L(2k).
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On setting the derivatives of I_ with respect to o, p equal to zero we find
the optimum values of these parameters, and substitution in (26) gives
I_=pBP = oQ = PQ/B. (27)

Numerical results for the scattering cross-section

The numerical results reported below are confined to the scattering
cross-section per unit width of the strip, t(@), defined in (10) above.
We then require only A(®,8) so that we can set § = ©, p = q, in the
expressions in the last section. On using (10) and (19), remembering that
we now set a = 1, k = ¢ in (10), we have

(@) = =~ Inm (I

2K

Lt I)-= Re(J+ +J_), say,

where we can show from (23), (27) that
- 2(i/%) I,

_ 2(L(2x)sin®(¥p cos ©)+2M(x,p)sin(kp cos @)sin(k cos ®)+L(2kp)sin®(k cos ©))
= k cos“® (L(2k) L(2kp) - M (k,p))

o

il

5

e e [L(2x)sin(p cos ©)M(x,p)sin(¥ cos ©)2 |
= % cos?® L(ok) "Clnz(” cos @) + - 512(2 n)cgfe Kp) - MB(i?g) = J&’

where we have separated out the dominant part of J+, and

M(kp) = L{k(1 - p)) - L{s(1 + p)}. Also

J_=-3(i/%) 1

i 2{cos {wp cos ®) - cos {% cos ©))
T kcos®® (2[L{«(1+p)} + L{x(1 - p))] - L(2x) - L(2xp)} °

The optimum value of p, which is so far undetermined, is found
empirically by using the variational property of the two above expressions.
Thus for a given value of k and ©, the quantity J+ is evaluated for various
p, and the required value of p is that for which J+ is stationary., A diffi-

culty arises since J+ is complex and the optimum value of p may not be the
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same for the real and imaginary parts. Forbunately it turns out that the
optimum values of p are not essentially different when k is not too large,
as illustrated in & numerical example below., The optimum value of p need
not of course be the same for J+ and J_ since these are obtained from inde-
pendent integral equations,

The above calculations to determine the optimum value of p were carried
out for various angles of incidence ® = 0(10)90 degrees and k = 0.4(0,4)2.8,
The results were similar Tor all angles of incidence and figures for a
typical example, namely ® = 50°, are given in Tables 1-4, TFor small w the
optimum value of p for both the real and imaginary parts of J+ was approxi-
mately 0.92 as shown in Tables 1 and 3. The optimum value increases
slightly as ¥ increases to 2.0, and then increases fairly rapidly to unity
as k increases from 2.0 to 3.0. The optimum value of p for the imaginary
part of J+ increases slightly more rapidly than the optimum value for the
real part but no significant error is involved in the assumption that p is
a constant equal to 0.92 for all K between O and 2.0. For small k the
optimum p for both the real and imeginary parts of J_ was about 0.68. The
optimum value for the imaginary part increases, and for the real part it
decreases, as p increases, but the estimates of the real and imaginary
parts of J_ are not seriously in error if we assume p constant equal to
0.68 for all k between O and 2.0,

Some typical results for t(®) are plotted in Figures 1 and 2, where the
optimm values of p for the real parts of J+ and J_ have been used. In
Figure 1 our results for t(®) are plotted against k for k= O.4 to 2.0, and

® = 0, 30, 60°, Also in Figure 1, for the sake of comparison, are the exact
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TABLE 1

Values of Re[J ] for ® = 50°, ¥ = 0.4 to 2.8, p = 0.88 to 0.96

N |
§<E\ 0.88 0.90 0.92 0.94 0.96
0.4 11278 | 1.1284 1,1286 1.1281 1.1265
0.8 0.8824 0.8829 0.8831 0.8828 0.8817
1.2 0.73%62 0.7365 0.7367 0.7367 0.73%62
1.6 0.6094 0.6095 0.6097 0.6098 0.6097
2.0 0. 4933 0, 4932 0.49%0 ! 0. 4930 0. 4930
2.4 0.3932 0.3924 0.3%916 0.3907 0.3898
2.8 0.3161 0.3143 0.3121 0.3094 0.3%060

TABLE 2

Values of Re[J ] for @ = 50°, k = 0.4 t0 2.8, p = 0.62 to 0.70
P
K\\\\ 0.62 0.64 0.66 0.68 0.70
0.4 0. 00559 0.00561 0.00562 0.00563 0.00562
0.8 0.0350 0.0351 0.0%352 0.0352 0.0351
1.2 0.0909 0.0911 0.0912 0.0912 0,0910
1.6 0.1656 0.1659 0.1659 0.1657 Q]@Q‘
2.0 0.2486 0.2488 0.2485 0.2479 0,2468
2.4 0.3%292 0.%289 0.3279 0. 3262 0.3238

- 2.8 0.3970 0.3950 0.3%920 0.3877 0,3%820
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TABLE 3

Values of Im[J+] for @ = 50°, g = 0.4 t0 2.0, p = 0.88 to 0.96

2 0.88 0.90 0.9 0.9% 0.96
~.
0.4 -1.2512 -1.2513 -1.2513 -1.2512 ~-1.2509
0.8 -0.5909 -0.5906 -0.5905 -0,5905 -0.5907
1.2 ~0.3078 ~0,3074 -0, 3071 -0.3070 -0, 3073
1.6 -0.1541 -0.153%6 -0.15%2 -0.1529 -0.1529
2.0 ~0.07#1 -0.0737 -0.0733 ~-0.0728 -0. 0724
TABLE 4

Values of Im[J ] for ® = 50 , k = 0.4 to 2.0, p = 0.62 to 0.70

T
i

\\;\\3\‘ 0.62 0.64 0.66 0.68 0.70
0.4 -0.1080 -0.1082 -0.1083 ~0.1084 -0.1084
0.8 -0.1918 ~0,1922 -0.1924 -0.1926 -0.1925
1.2 -0.2486 -0.2492 -0.2496 -0.2499 -0.2500
1.6 -0.2779 -0.2788 ~0,2796 ~0.280% -0.2808
2.0 -0,2814 -0.2830 -0.2846 -0.2862 -0.2878
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solutions of Morse and Rubinstein (Z) for ® = 0°, and the curves of Millar
(4) and (5). It should be noted that Millar's curves consist of a low-
frequency approximation extending up to &k %~ 1, and a high-frequency approxi-
mation extending down to k &2 1.25. These two approximations do not match
exactly. In Figure 2 our results for t(®) are plotted against k going from
k= 0.4 to 4.0 for normal incidence (@ = 90°). Also included are the exact
solutions of Morse and Rubinstein, Millar's solutions for normal incidence,
and the solution of Erdélyi and Papas (g). Our results agree well with the
exact solution of Morse and Rubinstein for 0.4 < k < 3 in Figure 2 and

0.4 < x < 2 in Figure 1. Our results are also in fair agreément with

those of Millar, the agreement being worst at grazing incidence where in
any case Millar's low- and high-frequency approximations do not Jjoin
smoothly in the region 1 < Kk < 1.25,

The solution of Erdélyi and Papas for normsl incidence given in
Figure 2 is obtained from the variational principle which is used in this
paper but a trial function is assumed which is simply constant over the
whole strip. The trial function of Erdélyi and Papas is obtained by
taking

p=gq=1, F+(x) = E+(x) = o> (-1<x<1)
in equation (21) above. We have already mentioned that the optimum value
of p for the even solution tended to unity as k increases from 2.0 to 3.0,
s0 that the graph of our results in Figure 2 tends to the solution of
Erdélyi and Papas for k> 3,0, Unfortunately the asymptotic behaviour
of the Erdélyi and Papas solution does not agree with that of the exact

solution as k tends to infinity., However our results show a considerable
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improvement over those of Erdélyi and Papas for k less than about 3.0.
The trial functions used in this paper are quite crude in that they
are step-functions with, effectively, only one step. In spite of this
the results are remarkably good. It is also noteworthy that empirically
it appears that no great loss of accuracy is involved in computing the
scattering cross-section if it is assumed that for all © we have
P =qg=0.92 for the even function (21) and p = q = 0.68 for the odd
function (25), in the range 0 < k < 2.5. It is the chief conclusion of
this paper that good results can be obtained with these simple trial
functions. This encourages the hope that it may be possible to apply
the same method to calculate the scattering by objects of more compli-
cated shapes in the awkward wavelength region where the wavelength is

comparable with the size of the obstacle.
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